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Abstract. Different expressions for calculating the Berry phase of adiabatic processes are 
reviewed and their limitations are discussed, These expressions are then applied to the 
case of a circuit surrounding a triple degeneracy. It is shown that the most general Formula 
for the Berry phase requires the use of the full SU(3) invariance group o f a  T state coupled 
to E + T, + T~ modes. The T x ( e  + v2) Jahn-Teller problem appears as a special case with 
SO(3) symmetry. 

1. Introduction 

The aim of this paper is to elucidate some aspects of the calculation of Berry’s geometric 
phase (Berry 1984), with special attention to the T x ( E  + T ~ )  Jahn-Teller problem. For 
a review on geometric phases in physics the redder is referred to a recent reprint 
volume, edited by Shapere and Wilczek (1989), and to papers by Aitchison (1988) and 
by Zwanziger et al (1990). Generalizations of the quantum phase to non-adiabatic 
cycles have been considered by Aharonov and Anandan (1987), and most recently by 
Moore and Stedman (1990a). 

In section 2 we present a general outline of the Berry phase calculation. The case 
of the SO(2) and SU(2) Hamiltonians is revisited in section 3. The next section is 
devoted to the T x  ( E  + TJ Jahn-Teller problem with SO(3)  symmetry. I n  section 5 we 
address the general case of a threefold degenerate state with SU(3) symmetry. 

2. Derivation of the Berry phase 

S2ppose we have a quantum system characterized by a time-independent Hamiltonian 
H ( X )  where X E R  is a parameter from a space fl. Let / n ( X ) )  he a certain non- 
degenerate and normalized eigenstate of the stationary Schrodinger equation 

f i (x) In(x) )=  E,(X)In(X)) X € R  ( 1 )  

depending smoothly o? X .  In our notation we omit current variables (spatial, momen- 
tum, spin) on which H ( X ) ,  €,(X) and In(X)) depend, except for the parameter X. 

Let us now assume that the Hamiltonian evolves from the time to until I ,  along a 
smooth trajectory X( t )  in the parameter’s space fl. I f  the evolution is slow enough, 
instead of solving the time-dependent Schrodinger equation 

ihd,l@(t))= f i ( t ) l # ( t ) )  (2) 
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one can use the adiabatic approximation which states for non-degenerate In(X)): 

A Ceulemans and M Szopa 

lJ.( l))=ln(X(f)))exp[ -;I,: &(X(t’))df’}.  (3) 

In the context of this approximation the omitted (current) variables are called fast 
variables, whereas X is the slow variable as we assume that it changes slowly compared 
to them. The approximation (3) states that the wavefunction I#) changes in time like 
in(X)) the stationary solution of i l l ,  muitipiie; by a dynamicai phase factor which 
registers the passage of time. In other words, H ( t )  does not change rapidly enough 
to allow transitions between different solutions Im(X)) of (1) and they evolve indepen- 
dently of each other. 

The projection of ( 2 )  in the adiabatic approximation (3) onto (n(X(f))l  yields the 
rule 

(n(x(f))IJrIn(x(I)))=o Io<  f < ll. (4) 

This equation describes the evolution in time of a given state I n ( X ( t ) ) ) .  Since I n ( X ( f ) ) )  
depends on I only through X ( t )  the rule can be converted into the form 

Im(n(dn) = 0. ( 5 )  

Here the imaginary function was introduced for later calculational convenience. Its 
use is justified by the fact that the bracket must be purely imaginary as a result of 
normalization of In(X)). Hence any state in real form necessarily obeys this rule of 
evolution. 

The law in ( 5 )  is a crucial point in the derivation of the Berry phase. It defines a 
way of transporting the quantum state In) along a curve C = { X ( f ) : f o S t ~  I , }  in 
accordance with the Schrodinger equation under an adiabatic constraint (Berry 1989). 

In the language of differential geometry ( 5 )  defines a connection in the line bundle 
( P ,  U(1), C) with the bundle space P being a sum over X E C of E , ( X )  energy 
eigenspaces for H(X),  with structural group U(1) and the base space C c fL. Let us 
call P‘ the principal bundle ( P ’ ,  U(l) ,  0 )  spanned over the whole space Cl. Expression 
( 5 )  is thus a quantum parallel transport law for In(X)). 

Let us now consider the system that is transported in this way along a curve C 
which is closed (X(1,) = X(f,)  = X,,) in R. After such a circuit, it may return as a state 
which is not identical with the initial one. The classical analogue of this is a parallel 
transport of a vector along a closed curve on a sphere. The final position of such a 
vector is rotated by some angle depending on the curve. Due to the assumption that 
the states In(X)) are non-degenerate the final state can differ from the initial one in a 
given X, only by a phase y,(C) 

In(x;)) = e’7,,‘c’l n (x:)) ( 6 )  

where ln(Xl))=lim,-, ;  In(X(1))) is the initial state and ln(X;))=lim,-,; In(X(1))) 
the final state. One way of calculating this phase is to take the solution In(X)) of (1) 
in a form in which it obeys the parallel transport law (5) along C\{X,). This can 
always be achieved by an appropriate choice of the gauge function @(XI for In(X)) 

In’ (~) )=ln(X))  e-’”Ix’ x E c. (7) 

y.(C) = Im In[(nP(xl) lnr(Xd)l  (8) 

The Berry phase corresponding to the state I n )  transported along the curve C is then 
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where In is a complex function. Expression (8) (or (6) in  a gauge p ( X ) )  is the most 
natural formula for the Berry phase, based entirely on an examination of the discon- 
tinuity of a wavefunction after parallel transport round a circuit. It exhibits the simple 
fact that the phase is a difference of phases of the same quantum stationary state 
ln*(Xo)) after and before its evolution. The requirement connected with expression 
(8) is that the state In) must be found in a gauge in which it  obeys the parallel transport 
law ( 5 )  along C. 

The next formula for the Berry phase can be derived if there exists another gauge 
function u ( X ) = p ( X ) + p ’ ( X ) ,  such that p ’ ( X )  is differentiable in C\(X,) and the 
vector field I n ” ( X ) )  is continuous along C (including XJ. This implies that I n ” ( X ) )  
must be single-valued over the whole base space C. The field / n ” ( X ) )  forms a frame 
of refe:ence for the calculation of the phase. Although this gauge does not have to 
exist globally in P one can always find it locally along a I D  curve C (in P). In terms 
of the function p ’ ( X )  the Berry phase is 

where p ’ ( X ; )  and p ’ ( X z )  are final and initial point limits of p‘(X(f)). Now we can 
write the second expression for the Berry phase which follows from (9) and (5)  when 
the differential of (7) (for p =  Y) is projected onto (n” (X) l  

,- 

In this form y,(C) is a path integral of a 1-form -Im(n’ldn’). It is worth noting that 
using the expression (10) we d o  not have to know the actual form of the gauge p ( X )  
in which In’(X))  satisfies ( 5 ) .  Instead one should only find the gauge u ( X )  in which 
the initial solution I n ( X ) )  of ( I )  is continuous. 

In the foregoing expressions for the Berry phase specific gauge transformations 
were seen to be required. This might make it appear that the phase itself is gauge 
dependent. Clearly this is not the case. The choice of specific gauges merely reflects 
the different conditions under which (8)-(10) are valid. The Berry phase itself is a 
geometric property of a closed curve in a projective Hilbert space and as such it is 
gauge invariant (Aharonov and Anandan 1987). 

The difficulty of finding an appropriate gauge can he avoided when using Stokes’ 
theorem and converting (10) into the surface integral of an exterior derivative of 
(n”1dn”): 

where S is an arbitrary orientable surface such that JS = C (its boundary is equal to 
C). In this form I n ” ( X ) )  has to be differentiable as a function defined almost everywhere 
(i.e. except for the set of measure zero) on S. The most important feature of this 
expression is that it is invariant with respect to the gauge transformation (7). It follows 
then that one can use in formula (11) the wavefunction in its original form 

y.(C) = -1m (dnl n Idn) (12) J J  s 
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without referring to special gauges as in (8) and (IO). The weak point of this formula 
is that the exterior derivative of (n”1dn”) does not always exist, e.g. if Cl is ID. Neither 
can one use this formula if the enclosed surface S is not orientable (Arnold 1978). 

Note that derivations of (10) from (9) as well as (11) from (IO) are consequences 
of Stokes’ theorem expressing integrals of 0-forms by 1-forms, and I-forms by 2-forms 
respectively. 

The integrands in expressions (IO) and (12) may he denoted as the connection 
form d:= -Im(n’ldn”) andthecurvature from 9 := -Im(dn/ A Idn).There isananalogy 
between these forms and the vector potential A and the magnetic field B in the theory 
of electromagnetism. The formulae for the flux of a magnetic field through the surface 
S are analogous to expressions (10) and (12) for the Berry phase where the form d 
plays the role of the vector potential A and the form 9 corresponds to the field B. 
Note that the connection form d yields a non-zero Berry phase only if the difference 
v ( X ) - p ( X )  has a discontinuity at X, (cf. (9)). Thus the phase, as defined by (10) or 
(12), is due to some flux of the curvature form field 9 through C (cf. discussion at 
the end of the next section). 

We note also that in his 1984 paper Berry proposed one additional expression for 
y.(C) expanding the field %“in terms of matrix elements of the operator VH, between 
different eigenfunctions of H. 

A Ceulemans and M Szopa 

3. An example: the SO(2) and SU(2) Hamiltonians 

In this section we briefly consider the case of a circuit near a point in parameter space 
at which two electronic states are degenerate. The purpose of this section is to provide 
an illustrative application of the general methods of section 2. Detailed treatments of 
this case are available in the literature, mainly in connection wi‘h the E x E Jahn-Teller 
problem (Berry 1984, Ham 1987, Zwanziger et a1 1990). Let H ( R )  be represented by 
a 2 x 2  diagonal matrix with eigenvalues i R  and - f R  and let la) and ID) be the 
corresponding eigenfunctions. These may be expressed by the respective column vectors 

T, in (13) is the generator of a rea) canonical transformation which leaves the eigen- 
values invariant. 

9 E [ O ,  271) cos 912 -sin 912 
T,  = 

= ( sin 812 cos 9/2 

where 

is the Pauli matrix, which generates a SO(2) subalgebra of SU(2). The corresponding 
Hamiltonian is given by 
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Eigenfunctions corresponding to the f R  and - f R  roots are respectively: 

The parameter space of H, is R = { (R,  e): 0 -=z R, 0 E [0,2?r)), i.e. the plane without the 
degeneracy point R =O.  The states Ia,(O)) and Ipl(S)) obey the parallel transport law 
( 5 )  for 0 E (0,27r) because they are real, 

Although GI depends smoothly on ( R ,  8) in R, this is not the case with the 
wavefunctions. Indeed in (15) the function cos 812 defined over the circle parametrized 
by O s  fJ < 2 ~  is not continuous at 8 = 0. By (8) we have for both states the same result 

if C encircles degeneracy 
otherwise 

which is a particular case of a more general fact that the Berry phase is w if C lies in 
a plane through the degeneracy and encircles it. 

Now we can construct a continuous basis In ' (X) )  that exists in  this case globally 
over the space R and is given by the gauge 4 0 )  = 812: 

la;(e))=e-"e/2J I.,(@)) 
Ip;(e)) = e-""/"lp,(e)) 

It allows us to use the expression (10) which reads 

where X = (X,, . . . , X N ) .  It gives for paths encircling the degeneracy: 

I 
yo,(C)= -1m --dB = ?r and Y, , (C)  = 7r. lo2- 2 

Strictly speaking one might argue that the function v( e) = 012 is not a gauge in  
the classical sense, since it does not satisfy the condition 4 du = 0. As a result and 
contrary to the normal gauge, it produces a vector potential which gives rise to a 
'fictitious' magnetic field. We note that this extended definition of a gauge is currently 
being used in modern field theory (Zwanziger el nl 1990, Polonyi 1988). 

An attempt to convert the integral (18) into a gauge-independent form (12) will 
not succeed in this case. This is because Stokes' theorem can only be used if the rank 
of the form is less than the space dimension (to make exterior differentiation possible). 
In the present case -(i/2) d e  is a 1-form in the I D  space C (it cannot be regarded as 
a 1-form in R because it is not linear in R ) .  The present example shows that a phase 
angle of ?r can occur for a Hamiltonian and wavefunctions that are real. Apparently 
this result contrasts with a claim by Simon (1983) that the Berry phase is only present 
in magnetic fields or some other condition producing a non-real Hamiltonian. Simon's 
argument was based on the observation that the curvature form will vanish if one can 
choose the wavefunction to be real. Clearly this argument is not valid for the present 
example since a curvature form does not exist in  this case. 
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Finally, to exemplify the surface integral formula for the Berry phase, we have to 
extend our model introducing a more-dimensional parameter space 0 by a further 
canonical transformation of H, generated by 

The transformed H is the SU(2) Hamiltonian and reads 

Its eigenfunctions are 

0 0 
2 2 

Ip2(@, 4))= -e~"mi2's in-~a)+e""21cos-~p) ,  

The full parameter space of the transformations T,(O) and T 2 ( 4 )  is the Cartesian 

However, in order to get a one-to-one correspondence between parameters and 
Hamiltonians different pairs (0, 4)  leading to the same matrices (20) should be regarded 
as one. This can be done by dividing the Cartesian product space by the equivalence 
relation -, defined as 

..--A..-. - 0  ^:_^I^^ I O  1,- 0 ., r : - - ._.. . 
p)I"u"LL "1 L.IICIS> (V, V,k a, 6 i),, I.C. 'i ,"rub. 

( 6 4 )  - (O ' ,  4') 

o[(e, +)= ( w ,  v ( 0 ' = 2 ~ - 0  A +'= v o = O ' = O V  o =  e '=  ..I. 
This relation joins redundant parameters (cf figure 1). The resultant space 0=  
(S, x S,)/ - is then homeomorphic with the sphere S,. 

One can show that in the gauge (21) the parallel transport law ( 5 )  is obeyed by 
!rajcc!ories that fer: e!angntian !ices and far the meridian of the sphere. P.!ong those 
trajectories the wavefunctions have one discontinuity point where they change sign 
thus giving a Berry phase equal to r. 

Figure I .  The torus S ,  x S, is homeomorphic with the sphere S: if it is divided by the 
equivalence relation -. Under this relation points (0. 4)  and (Zn- 8. d+ ill become 
equivalent and circles corresponding 10 8 = O  (8 = nl  are shrunk into B poinl. 
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To use formula (10) one should construct continuous vector fields ln"(X)). In  the 
present case it is not possible to find a gauge in which Ip;(X)) or la;(X)) would be 
globally continuous on S,. The most 'regular' gauge v ( 8 , + )  = + / 2  yields 

(22) 
8 8 
2 2 

Ip;(8, +))=-e-'" sin- la)+cos- lp)  

in which (IO) can be used for all trajectories that do not pass through the south pole 
8 = ?r of S, where ID;) has a discontinuity. The connection form is then .d = 
f ( l  -cos 8 )  d+. It corresponds to a flux line entering the sphere through its south pole. 

For more general solutions we can now use the formula (12). It is practical to 
reformulate it into a form 

= -2 Im 1 (1 (-1 a n  -) an dX, dX, 
t<, ax. ax, 

where the summation runs over all pairs of components in X space. According to this 
the Berry phase for the state p2 and along the circuit C is 

y p I ( C )  =i sin 8 d 8  d+ =fw(C) (24) 

i.e. half the solid angle subtended by C at the centre of the sphere. This is the result 
which Berry obtained using the VH formalism (Berry 1984). 

Note that the field ln(X)), i.e. in this case lp,(8, +)), is discontinuous on the poles 
of the parameter sphere (for 8 = 0 and T) and along the + = 0 elongation. Also in the 
most 'regular' gauge Ip;(O, +) is discontinuous on the south pole 0 = ?r. But these 
irregular points can be excluded from the domain of the field because their set is of 
measure zero on the sphere S,. On the remaining part of the domain the field In(X)) 
is differentiable and the integral (24) gives the proper value of the Berry phase 
independently of the gauge chosen. 

Going back to the analogy of the connection and curvature forms to the vector 
potential and the magnetic field, it is clear from (24) that if the Berry phase along C 
corresponds to a flux through S ( C  =as) then the above example refers to the field 
of a monopole of strength f situated at the centre of the parameter sphere. The field 
of a monopole is radial and spherically symmetric and thus cannot be described globally 
by a connection form d, 3 = d d  (in our analogy, it corresponds to B = rot A) .  This 
is the reason why we could not find the form d defined globally on the whole sphere. 
All existing vector potentials of a monopole introduce flux lines and break the spherical 
symmetry of the system. 

I1 S 

4. The SO(3) Hamiltonian 

In this section we apply the general formulae to the case of the T x ( E  + T?) Jahn-Teller 
Hamiltonian assuming linear and equal coupling to the r2 and e phonon modes. This 
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Hamiltonian has SO(3) symmetry. The associated Berry phase has been studied by 
Chancey and O’Brien (19881, and by Judd (1989). Attention has also been devoted to 
the related T x T~ problem (O’Brien 1989, Ham 1990). 

Let f i ( R )  be represented by 3 x 3  matrix H with eigenvalues tfq,  +fq, - q ( q > O ) ,  
and let le), IT), 10 be the corresponding eigenfunctions. These may be written in a 
column vector notation as follows: 

A Ceulemans and M Szopa 

T ,  in (26) is a real canonical transformation which leaves the eigenvalues invariant: 

sin 4 cos 0 cos 4 sin 4 sin 0 (26) 

cos 4 cos a -sin 4 cos 4 sin 0 

-sin e 0 cos 0 

0 -i 0 

T, = e- i+L> e-iBLa = 

L2 and L, are generator matrices of a SO(3) subalgebra of SU(3) (Wagner 1984): 

L2= 0 0 0 (27) 

O O i  

‘ I  \” 

The transformed Hamiltonian is given by (OBrien 1969): 

l J 3  J3 
, s e - l q .  

J 3 l J 3  H , = T , H T ; ’ =  - l q i  --qs+TqE -- 

with 

J 3 .  

J s .  

a .  

q5 =- q s,m 20 sin 4 

q,, = - q sin 20 cos 4 

qc =- q sin2 0 sin 24. 

4 
2 2 

qe =- (3 cos2 a- 1) 

8 .  
2 

qF =- q sin2 0 cos 2 4  
2 

2 

The (qe ,  q.) parameters refer to the E mode, while (qs ,  q,,, q‘j constitute the r2 mode. 
The range of these parameters is restricted to the so-called (0, 4 )  O’Brien sphere, 
which surrounds the triplet origin. The eigenfunction corresponding to the lowest root 
of H ,  is given by 

j5 , j=T, iCj=sinecos~jSj+sin O s i n ~ j ~ j + c o s ~ j ~ j .  (24 j 

Theparameterspaceofthiseigenfunctionisa(0, #)toruswith(B, ~ ) ~ [ 0 , 2 n j X [ O , 2 n j .  
However in order to find the parameter space of physical importance, the coordinate 
space of the phonon modes should be preferred over the Hilbert space of the wavefunc- 
tion. Physically distinguishable are parameters leading to different Hamiltonians. For 
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the H ,  Hamiltonian the relevant parameter is thus found to be the hemisphere S,/ -, 
where - is the equivalence relation: 

(0,4)- (e ' ,  &)a[ (e ,  4) = (0', 4,) v ( e ' =  T- e q=  4 + 7r) v e '=  - e  = i 7rI 

joining antipodal points of the sphere. The resultant space S,/ - can be regarded as 
a family ofdirections at the centre of S 2 .  Exactly as in the case of the SO(2) Hamiltonian, 
the real state I[,) is seen to obey the quantum parallel-transport law ( 5 ) .  The associated 
Berry phase can thus be directly evaluated from the discontinuity of I[,) on a closed 
path trajectory using the formula (8). Clearly the parameter space allows two types of 
closed paths: C ,  paths start and finish at the same (0, 4)  point; C,  paths start at (8,4) 
and finish at the (antipodal) inversion point ( m  - 8, 4 + 7r). Inspection of the wavefunc- 
tion I[,) in (29) reveals that both paths induce different Berry phases: 

(30) 

These conclusions are not dependent on whether or  not the circuit encircles the north 
pole of the OBrien sphere as suggested by Chancey and OBrien (1988). This pole is 
distinguished only because of our choice of a reference frame. To use formula ( I O )  
one should again construct a continuous vector field 15;). Exactly as in the case of the 
SU(2) Hamiltonian (see (21)). it is not possible to find a gauge in which 15;) would 
be globally continuous on S 2 / - .  The gauge, chosen by Chancey and O'Brien (1988), 
is exp(i4). It must be realized that this choice only works for paths that avoid the 
0 = 0 direction. For such paths one has 

y ( C , ) = O  

y ( C 2 )  = -7r. 

= -fc d 4  (31) 

which yields the result in (30). It is noteworthy that the path integral in (31) cannot 
be converted into a gauge-invariant 2-form, because the I-form (nldn) is a form in S,,  
i.e. its domain is ID. Hence if we want to apply Stokes' theorem, we must start from 
a more complete description of the threefold degeneracy in the centre. This can be 
done by using a SU(3) Hamiltonian. 

5. The SU(3) Hamiltonian 

In the previous section we reached the conclusion that a global gauge-invariant 
expression for the Berry phase of the SO(3) Hamiltonian could not be derived in a 
E + r2 subspace. Exactly as in the case of the twofold degeneracy, such an expression 
can only be found if one starts off from a more general description of the degenerate 
manifold, using a SU type Hamiltonian. The transformation which allows complete 
unitary freedom of one component vector of our manifold is the T2 transformation, 
defined in (32): 

- e i / l ( o + L 3 + y l l  ei13iL3-ylH, ei/3!Y-LIlR2 ei13!<?-L31B, 
2 -  

(32) 
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with 
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I = O  i' O 1 0  O) L+(: ; :) 
0 0 1  0 0 - 1  

B2= (-; 0 0 ; 0 1) .;(A -8 !) 
The transformed ground state ket thus becomes 

IC2)= T,I{,)=sin 0 cos 4 e'"i[)+sin 0 sin 4 e"lV)+cos 0 eiylc). ( 3 3 )  

The parameter space of this IC2) function may be defined as: S 2 / 8  x[O, 2 ~ ) ' .  Here S , / 8  
is the eighth part of the S2 sphere, with: (0, 4)  E [O, ~/2]x[O, 11/21, In this real octant 
the 0 and 4 functions which appear in (33) ,  are zero or positive. They may thus be 
identified as the absolute values of the eigenvector coefficients. The a, p ,  y parameters 
are the three corresponding phase angles, each with a range of 27r. As a result the 
15;) ket, defined by the five parameters (6, 6, a, /3, y ) ,  is seen to address an arbitrary 
point in the U(3) Hilbert space of a threefold degeneracy. 

The physical interactions, that can be represented in this space, may be found by 
transforming the H, Hamiltonian of (28 ) :  

with 

iiP-,l Q t = q c e  
Q, = ~~ e"?-"' 

i io-PI Q1=sle  . 
This H2 Hamiltonian is defined in a 8-dimensional space, comprising the five E + T~ 

phonon modes (qs ,  q., Re Qe, Re Q,, Re Q1) and three time-odd interactions 
(Im Qf, Im Q,, Im Q1) transforming in cubic symmetry as T , .  Note that H, commutes 
with the totally symmetric part of the T2 operator, exp[i/3( a + p + y ) I ] ,  which performs 
a global phase change of the Hilbert space. As a result H2 contains only diflerences 
of the phase angles a, p ,  y .  It may thus be characterized as a T x ( E  + T ,  + T ~ )  Hamil- 
tonian with SU(3) symmetry. 

Several representations of the parameter space of H2 are possible. As in (33) it is 
convenient to restrict the 0, 4 variables to the positive SJ8 octant. This choice puts 
no limitation on the range of qR and 4.. On the other hand it confines the qc, q.,, q1 
parameters to zero or  positive values. These parameters can therefore be identified 
with the absolute values of the complex Q parameters. Adopting a Q = 101 exp(i Arg Q )  
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format, one has 

IQsl= 95 Arg Q ~ = P - v  
IQ,l= 9., Arg Q, = 7-n (35) 
lQtl= 41 ArgQ,=a-P .  

expi(ArgQg+ArgQ,,+ArgQ6)=1. (36) 
In the phase space of the Q parameters expression (36) defines a { 11 1) periodic plane. 
Figure 2 shows a section of this plane in the [0,27r)’ Cartesian cube. This section 
contains two triangles and the (O,O, 0) origin. The triangles can be represented by their 
projection on one of the phases of the cube, say Arg Qs = 0. The resulting phase space 
is the periodic square of the Qr and Q, arguments. It is topologically equivalent to a 
torus. 

In summary, the parameter space Cl of the SU(3) Hamiltonian may be defined as 
S2/8  x [0,27~)*, where S2/8 is the positive octant of a (8, 4 )  sphere, and [O, 2n)* refers 
to the torus, formed by Arg Qs and Arg 0,. This space is represented schematically 
in figure 3. It should be noted that on fhe corners of the (0, 4)  octant the phase 
parameters are redundant, while along the sides only one phase parameter is required. 

The Q arguments in (35) are seen to obey the following constraint: 

:Arg Q Y  

Figure 2. The phase space of  the SU(3) Hamiltonian. The Q arguments are confined to 
the { I 1  I )  periodic plane. In the Cartesian cube [0,2*)’ this plane consisls of two triangles 
plus the point (O,O, 0). 

Figure 3. The parameter space ll of the SU(3)  Hamiltonian 
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The space il allows different types of closed paths. The projection of a closed path 
in the ( e ,  4) subspace must always be a closed curve, since this space does not contain 
redundancies. On the other hand in the phase space of the Q, and Q, arguments 
closed paths can be represented by a closed curve, or by a line connecting two opposite 
sides. A third kind of closure in this space involves a wjump. This type of path will 
be discussed later in this section (vide infra (39 )  and figure 4). 

The Berry phase associated with a closed path in il can now be caculated using 
both the path integral and surface integral methods. To apply the path integral 
expression we first extract a phase factor e" from IC2). The resulting function appears 
to be continuous in 0. Following our earlier convention in (10) we will denote this 
function as I&'). One has 

15;) = e-'%) 

=sin e cos 4 e""-Y'({)+sin 6 sin 4 e " P ~ " l ~ ) + c o s  e l l )  
=sin ocos 4 e-'A"Q*(()+sin  sin 4 e i A r a Q ~ ( ~ ) + c o s  ell). (37) 

The Berry phase of this function follows at once from (10). 

sin26[cos2 @ d Arg Q, -sin2 @ d Arg Q5]. (38 )  

As an example we may consider closed paths in a subspace defined by 4 = 0. In  this 
subspace the only non-vanishing interaction parameters are 

= k 
J 3 .  Q, = y q sin 28 exp(i Arg 0,). J3 . *  q , = - q s i n  B 

2 
qe = $ q ( 3  cos2 e -  1) 

The qs and qe parameters may be recombined to 

J3 
f q s  +- qp = I  

2 2 q  

and 

A , J 3  
- q n - ~ q . = - q C O S 2 0 .  
2 2 

Hence in the 8~ parameter space ofthe Hamiltonian, only three dimensions are relevant, 
viz. 

Re Q, Im Q, J 3 ,  y 4 e - 5 q c  

In  this subspace the S U ( 3 )  coupling conditions define a sphere with radius ( A / 2 ) q .  
The corresponding polar angles are 28 for latitude and Arg Q, for longitude, as 
indicated in figure 4. The circular path C ,  in the figure is entirely in the real coordinate 
plane; it thus corresponds to closed path of the SO(3)  Jahn-Teller Hamiltonian. 

To calculate the associated Berry phase, one must realize that the phase of the Q, 
parameter changes along this path. For positive real values of Q, the phase angle is 
zero, but for negative real values the phase angle equals ?r. Hence Arg Q, changes 
from 0 to T at the south pole of the path, and back from ?r to 0 at the north pole. 
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R e Q 1  \ I /  t cl I 
20 
c 

IT 

Figure4. Examples of closed paths in Cl.  The top of the figure shows the subspace defined 
by # = 0. The bottom shows a projection af the C, path in the space of angular coordinates. 

This is illustrated more clearly in figure 4, where the path is plotted in the space of 
the angular coordinates. As can be seen from (38)  the 7i-jump at the south pole (28  = v )  
will contribute to the Berry phase, yielding 

vi,(CJ = [ A x  Q.3 = v. (39)  

This result of course concurs with the conclusions reached in the previous section. 
Another example is the circular path C, in the Argand plane of the Q, coordinate (cf. 
figure 4). Along this path one has 28 = 7i/2. Substituting this value in (38)  again yields 
a Berry phase of 71: 

vi,( C,)  = fC2 sin' 8 d Arg Q,, = $Arg Q,]:" = v. (40) 

These results can be directly converted into a surface integral expression, by applying 
Stokes' theorem to the 1-form in (38).  One obtains 

= [[ (sin28 cos2+ d8-sin 2 4  sin' 8 d 4 )  d Arg Q, 
S 

+ 15 (-sin 28 sin'$ d8+sin28 s in24  d 4 )  d Arg Q, 
S 

As an example we may again consider the 4 = 0 subspace of figure 4. I n  this case (41) 
reduces to one-half of the solid angle that C subtends on the spherical surface in the 
relevant subspace. 

^ .  

C c {,$=O): y ( C ) = f  sin 20 d28 d Arg Q, = i w ( C ) .  (42) J J  
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The result in (42) parallels the conclusions for closed paths encircling a twofold 
degeneracy. This should not be too surprising: by imposing the 4 = O  condition on the 
Hamiltonian, one restricts its symmetry to a SU(2) subgroup and thus recovers Berry’s 
treatment for a twofold degeneracy. In order to obtain a more transparent form of 
(41), which underlines the intrinsic symmetry of the result, it is indicated to replace 
the B and 6 coordinates by the more symmetrical Cartesian components x =sin B cos 4, 
y = sin B sin 6, z = cos 0, with the redundancy condition: x 2 + y 2 +  z 2 =  1. In the positive 
(0 ,  4 )  octant these Cartesian components are either zero or positive. The path integral 
of (38) may now be rewritten as 

A Ceulemans and M Szopa 

External differentiation over this I-form yields the surface integral over a 2-form: 

(dx2 d Arg Q, -dy2 d Arg Qc) 
vi, = II S 

(44) 

This surface integral is seen to combine the four parameters that define the SU(3) 
Hamiltonian. By using the redundancy relations d(x2+y2+z2)  = O  and d(Arg Qc+ 
Arg 0, + Arg Q I )  = 0, it is possible to perform concomitant cyclic permutations of the 
xyz and cqc labels. Hence alternative forms of (44) read 

vi,(C)= [I (dy2dArg QI-dZ2d Arg Q,)  
s 

(45) 

Y,(C) = (I (dz‘dArg Qf-dx2dArgQi) .  
s 

These formulae provide the desired general expressions for the Berry phase of a 
threefold degenerate state. 

6. Epilogue 

As we have argued in this paper, the most natural formula for the evaluation of the 
geometric phase accompanying a cyclic evolution of a quantum system involves a 
direct examination of the wavefunction after parallel transport around a circuit. The 
only difficulty connected with this expression is that the state must be taken into a 
gauge in which it obeys the transport law. On the other hand, in  order to use a 
gauge-independent formalism, based on Stokes’ theorem, the circuit of interest must 
be defined in a sufficiently general parameter space. This observation connects the 
Berry phase concept to the group theory of the embedding of invariance groups. 

Specifically for a threefold degeneracy, we have found that the T x ( E  + T?) Jahn- 
Teller problem with SO(3) symmetry must be embedded in the SU(3) parameter space, 
reflecting the full symmetry of interactions in a threefold degeneracy. Perhaps this new 
insight has an interesting physical ‘portie’. It  draws attention to the fact that the JT 

distortions explore only a minute part of the interaction space. To appreciate the rich 
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structure of the degeneracy, other symmetry-breaking processes should be investigated. 
Such processes could be external to the system, e.g. by switching on a magnetic field, 
or intrinsic, i.e. related to the dynamics of the system itself. Interestingly Moore and 
Stedman (1990b) have pointed to the possibility of the actual observation of such 
intrinsic time-odd electron-phonon coupling mechanisms in ligand field systems. 
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